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From the medieval time agriculture is one of the most
important enterprises in the world as it helps to meet the basic
needs of human civilization by providing food, clothing,
shelter, medicine and recreation. Soil as prime need acts as a
store house of water and nutrients for plant growth but all
fertile soils need not be productive due to lack of essential
nutrients like nitrogen, potassium, cobalt, copper, organic
matter, moisture and microorganism, etc. To maintain the
fertility and health of soil without deterioration soil
conservation practices of various kinds are followed. One
such step is composting, the process of decomposition of
organic wastes. For the nutrient cycling to occur at the
optimum level for plant growth we need to ensure that the soil
is balanced in three ways: chemically-nutrients, biologically-
microbiological, physically- structure; the components of an
organic nutritional system are made up of compost as the
foundation of the biological system, over cropping-green
manure, foliar sprays and natural, fertilizer as organic
(Sharma and Johri, 1992). The heaped masses of plant
material, piles of agricultural and forestry products, and other
accumulations of organic matter wherein warm, humid, and
aerobic environment provides the basic conditions for the
development of thermophillic microflora (Maheswari .,
1987). During compost exothermic reactions take place
through self-heating of composed flora and fauna in a manner
that follow the following schedule. At the beginning of the
process the mesophillic saprophytes are dominant and later
on increase in temperature ~ 60°C, thermophillic spores are
favoured to occupy the substratum (Johri and Satyanarayana,
1984). This unique thermal adaptation as a puzzle of stored
agricultural products compelled Miehe (1907, 1930) to study
the microflora present therein. He was the first to present
extensive work regarding thermophilic microorganisms and
isolated four species of thermophilic fungi: ,

, , and
Discovery of the ubiquitous

fungus by Tsiklinskaya in 1899 as
, or was a chance

contaminant on potato inoculated with garden soil. Noack in
1920 isolated thermophillic fungi and was intrigued by the
fact that in addition to self-heating masses of hay and compost
and heaps of leaves, the thermophillic fungi were present in
places where temperatures conducive to their growth occur
red only infrequently; this then provided the foundation for
pioneering discovery of their physiology and associated
importance.

In an ecosystem temperature is a key component which is
responsible for frequent distribution and metabolism of any
organism. is a thermophillic
fungus which normally grows at maximum 60°C and
minimum of 20°C but the optimum temperature for growth is
50°C (Wang ., 2012). is explicitly
associated with organic substrates such as compost resources,
paddy straw , wheat straw, manures of birds and mammals
droppings, dried and dead materials of plant like litter fall as
leaves, twigs, stems and root, and municipal refuse where the
process of decomposition by the mesophillic as pioneer
community leads to a raised temperature of up to 45°C
(Chang and Hudson,1967) and paves way for the growth of
resting propagules of thermophillic to active mycelia as it
reaches the climax community of the system (Johri .,
1999; Subrahmanyam, 1999). has also been
studied in other self-heating environments, including self-
heating hay, coal soil tips, industrial wood chip piles, stored
grains, aerial parts of crops, and freshly harvested grains
(Rawat and Johri, 2013). But the occurrence of
is also reported from different types of dry to drenched soil
conditions, like from aquatic sediments, water logged
mangrove soil, cultivated clay soil to and loamy garden soil to
desert soil and rocks (Singh ., 2003). Isolations have also
been reported from air in Indonesia and British Isles and on
skin of human patients (Abbas, 2009). Recently
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was first to isolate with four other species of thermophillic fungi. Tsiklinskaya, in 1899 found
( ) a chance contaminant on potato inoculated with garden soil. This fungus is explicitly associated with

organic substrates such as compost resources, paddy straw , wheat straw, manures of birds and mammals droppings, dried and dead materials
of plant like litter fall as leaves, twigs, stems and root, and municipal refuse where the process of decomposition by the mesophilic paves way for
its colonization. grows from 30 to 52-55 C. The fungus possesses both intra- and exocellular
thermozymes like xylanase, protease, lipase, amaylase, etc. However, for cellulose degradation it seems to live as a commensal with cellulose-
decomposing species, like Phylogenetically is classified as a mitosporic fungus (imperfect
fungus), that reproduces asexually by forming aleurioconidia. It is also reported as a member of the order in a sister relationship with

. is a candidate organism for future of bioenergy based technologies by virtue of its
colonization capacity, ability to deconstruct wood and wood based products, and release of cellulase-free xylanase.
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was reported as a cause of infective endocarditis
(Shivagnanam ., 2013). Due to the dissemination of
propagules from self-heating masses of organic material
thermophillic fungi are found dominant in soils of temperate
compared to the tropical countries. The ups and down in
moisture content and pH with the decomposition of organic
substrates of different material resources in compost plays a
significant role for microbial structural diversity and activity.
Thermophilic fungi are much more common in acid thermal
habitats than the neutral to alkaline pH (Rawat and Johri,
2013). The level of inoculum concentration of paddy straw
was found to affect colonization; increased colonizing ability
of was associated with higher inoculums dose.
Souza . (2014) reported the presence of the fungus during
peak-heat of phase II in mushroom composting although
Zhang . (2014) hypothesized that was
dominant and abundant during thermophillic phase under
higher temperature in lignocellulosic compost. Although CO
is not regarded as a nutritional requirement for fungi, but it
shows significant role in the growth of which
is severely affected in the absence of CO (Noack, 1920). The
concentration of CO inside composts can be as high as 10 to
15 ppm therefore, it is likely that its assimilation plays a
nutritional and morphogenetic role in the development of the
fungus. is ubiquitous and has been reported
from different substrates by researchers from various
geographical locations in USA, UK, Nigeria, Ghana, India,
Japan, Australia and Indonesia (Tonouchi, 2009; Hudson,
1992). The available worldwide distribution across the
habitat is presented in .

Enzymes are the soul of microorganisms or any living
organisms which make them alive and help to complete their
nutrition and life cycle. Enzymes of thermophillic fungi have
been studied primarily to explore their suitability in
bioprocesses as tool for white biotechnology (Littlechild

, 2013). Thermozymes are able to function at higher
temperatures but often show increased stability to solvents,
pH and proteolytic degradation. Daniel . (2008) reported
dependency of enzyme stability on maintenance of a
functional structure, and the stability of any protein is
marginal and equivalent to a small number of molecular
interactions. The only difference in thermostability with the
mesophillic protein is that the free energy of stabilization is
higher in it (Morgan , 1972). The thermal stability of all
enzymes can be measured in two different ways, either as a
function of temperature at which the protein folding is
determined and, another as a loss of function.

grows from 30 to
52-55°C. It is extremely common in all types of self-heating
materials including birds' nests and sun-heated soils. It
colonizes composts after peak-heating and persists
throughout the high-temperature phase. Trent . (1994)
demonstrated survival of conidia and synthesis of heat shock
proteins (HSPs) in , germinated at 50°C and
heat shocked at 55°C for 60 min prior to exposure to 58°C.

The fungus possesses both intra- and
exocellular types of thermozymes. However, it cannot
degrade cellulose and it seems to live as a commensal with
cellulose-decomposing species, sharing some of the sugars
released from the plant cell walls by their cellulolytic
activities for e.g., the fungus shows profuse growth in mixed
cultures with a cellulolytic fungus,
(Hedger and Hudson, 1974). In , a
single transporter was identified for glucose, xylose and
mannose, the hydrolytic products of cellulose and
hemicellulose. Moreover, it may readily utilize xylan, which
is external to cellulose in the plant cell wall and is apparently a
more accessible carbon source (Prabhu and Maheshwari,
1999). A great deal has been published on xylanases of

due to its application in biobleaching of pulp in
the paper industry and to minimize the need for chlorine for
pulp bleaching in the brightening process. The majority of
xylan-degrading enzymes from thermophilic fungi are
endoxylanases. Xylanases of some strains of
and are optimally active at 70 to 80°C, contains
disulphide bond which attributes as resistant to temperature
and also show remarkable resistance to denaturation up to 8 M
urea (Tatu ., 1990). Generally proteins have a long shelf-
life in the dry state. Though, the lyophilized xylanase of

was inactivated after 2 months at 20°C,
the purified enzyme in solution did not lose activity. The
xylanase of , is a polypeptide of
225 amino acids with high homology to other xylanases
(Schlacher ., 1996; Gruber ., 1998). Xylose, the
pentosan unit of xylan and paper of inferior quality has been
found an excellent carbon source and inducer for xylanase in

(Anand ., 1990), and some other
fungi (Krishnamurthi, 1989; Maheshwari and Kamalam,
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table 1

FUNCTIONAL CHARACTERISTICS

Table 1. Geographical Distribution of
acrossvarioushabitats.
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Habitat Author
Compost soil Chadha et al., 2004
Cultivated soil Rajasekaran and Maheshwari,

1993 ; Chadha et al., 2004
Paddy straw compost Satyanarayana and Johri, 1984
Alluvial soil Johri and Thakre, 1975
Coal spoil tips Apinis 1963a; Evans 1971; Johri

and Thakre, 1975
Hay Miehe, 1907
Wheat straw compost Zhang et al, 2014
Garden soil Tsiklinskaya, 1899
Stored grains Clerk et al., 1969
Mushroom compost Salar and Aneja, 2007; Zhang. M.

et al., 2014
Coastel Grass land Apinis, 1963b
Hot springs Mehta and Satyanarayan, 2013
Vermicompost Anastasi et al., 2004; 2005
Rice field soil Tonouchi, 2009
Near neutral and
alkaline thermal springs

Pan et al., 2010

Maize straw compost Zhang et al., 2015
Human skin Abbas, 2009
Birds’ nests Satyanarayana et al., 1977; Tansey,

1973
Surgical infection Sivagnanam et al., 2013

[



1985). Interestingly, the best xylanase-producing strains of
secreted small amounts of xylan-

debranching enzymes in crystallized form as glycoprotein of
21 to 78 kDa mol.wt with which polyclonal antibodies
showed antigenic cross- reactivity and did not produce -
mannan- and arabinan-degrading enzymes (Naren, 1992).
Like xylanase, thermostable chitinases maintain their
structure and exhibit very high specificity and efficiency even
at extreme conditions and hence it may have significant
industrial value. Chitinase from predicted 3D
model of chitinase I and II showed the characteristic

(Khan ., 2015).

An induced production of thermostable alkaline proteases
was observed only in two thermophillic fungi i.e.,

and based on casein agar
hydrolysis by culture filtrates in the presence of 2-8% casein
as an external substrate (Ong and Goucher, 1973; 1976;
Stevenson and Goucher, 1975). Lipase was isolated byArima

(1972) using strain Y-38 from
compost employing soybean oil, starch, corn steep liquor, and
antifoaming agent as substrate in the medium. Lipases have
wide applications in the food industry and are also used as
biocatalyst in stereo selective transformations (Jaeger and
Reetz, 1998). The lipase produced by is a
glycosylated hydrolase that consists of 269 amino acids
(Kumar ., 2015). This has been used in detergent
formulation along with other microbial enzymes such as
protease, amylase, and cellulase. Lipase produced by

is structurally similar to
lipase. The efficiency and thermostability of lipase was found
to differ with strains of . Optimum
conditions for the production of lipase by this fungus is pH
between 7 and 8, temperature 45°C and an incubation period
of 30 h (Arima ., 1972).

also shows considerable

e of starch. (Rao ., 1979, 1981; Taylor .,
1978). Thermostable starch degrading enzymes play an
important role in the industrial production of glucose from
starch; this has significance in food, feed, pharmaceutical and
chemical industries. Detailed characterization of amylase of

has been reported by several
worker (Adams, 1994; Adams and Deploey, 1976; Barnett
and Fergus, 1971; Bunni ., 1989; Fergus, 1969;
Jaychandran and Ramabadran, 1970; Sadhukhan .,
1992). Diversity of amylase enzyme is common in fungi.
Out of seven different tested strains of only
one similar form of the enzyme was detected (Mishra and
Maheshwari, 1996). Glucoamylase is an exo-acting enzyme
which hydrolyzes alpha-1, 4-glycosidic linkages and, less
frequently, alpha-1, 6- glycosidic linkages from the
nonreducing end of starch, producing beta-D-glucose as the
sole product. Glucoamylases of had dissimilar
carbohydrate contents of different molecular masses but with
similar thermostabilities (Mishra and Maheshwari, 1996).
Moreover being a stronger thermophile,

produces less stable cytosolic enzyme malate
dehydrogenase (Wali ., 1979; Wali and Mattoo, 1984).

trehalase is found as a monomeric
protein of 145 kDa responsible for degrading the non -
reducing disaccharide trehalose which is accountable for the
stability of cell membranes and acts against drying and
thermal denaturation; variable levels of this enzyme have
been reported in (Colaco .,
1992; Crowe . 1984; Bharadwaj and Maheshwari, 1999)
Trehalase from this fungus had acidic pH optima, between 5.0
and 5.5., they were glycoproteins, with a carbohydrate
content of 20% and were optimally active at 50°C.
Thermophillic invertase, an atypical enzyme in its behaviour
from is an inducible thiol protein which
depends on the maintenance of a catalytically important
sulfhydryl group(s) in the reduced state (Shenolikar and
Stevenson, 1982). In addition to this, an inducible, dimeric,
glycoprotein beta-galactosidase of molecular mass 75 to 80
kDa, stable at 56ºC was recovered (Fischer ., 1995).
Further, was examined for activity of
the total tRNA synthetase preparation by aminoacylation
activity which gets reduced to half at 50ºC. (Joshi and
Cherayil, 1987).

A number of phylogenomic and multigene studies have led to
an improved understanding of fungal phylogeny (Fitzpatrick

., 2006; James ., 2006; Robbertse ., 2006) that has
resulted in the adoption of a vastly improved classification of
the fungi (Hibbett ., 2007). However, these studies are not
completely congruent and the classification of certain
taxonomic groups remains problematic. The phylogenetic
analyses are complemented by experimental growth,
temperature relationships for fungal species reported to be
thermophilic. Using the criterion that a thermophilic fungus is
one that grows faster at 45°C than at 34ºC, phylogenetic
analyses suggestes that the known thermophilic fungi belong
to the orders , , , and

. Cooney and Emerson (1964) discussed
comprehensive account of the taxonomy, biology and
activities of thermophilic fungi. is
classified as a member of (imperfect
fungus), that is unicellular or septate and reproduces
asexually by forming aleurioconidia (Singh ., 2003).
However, Salar and Aneja (2007) have reported

as a member of the order in a sister
relationship with . Seven species
of regarded as thermophiles include:

and . According to
Morgenstern . (2012) the species pairs

and
and receive strong support

as being monophyletic (each 100 % BSS).

Synonyms of include,
Miehe (Griffon and Maublanc, 1911)

(Griffon and Maublanc, 1911;
Mason, 1933) sp. (Rege ,1927; Mason 1933),
and (Mason, 1933).

as the first assessed thermophilic fungus is
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supported by majority of the investigators and its
nomenclatural history has involved genera such as

and
(Salar andAneja, 2007)

In the , thermophiles are not abundant but occur in
different positions of the phylogeny, indicating a potentially
complex evolutionary history for this trait. Since they can
propagate under the conditions where other organisms either
cannot grow or grow little, microorganisms living in extreme
environments always have been considered as a popular
research subject by scientists. In particular, the tolerance of
these microorganisms' cell components to high temperature
has caused thermophilic fungi to be used extensively in
different types of biotechnological applications.

Environmental awareness and abatement scenario is opening
new vistas of energy generation which is based largely
through biological agents. In this scenario, microbial world is
viewed with favour since fungi are usually rich in
hemicellulosic enzymes and availability of agroresidues is
considerable. Global demand estimates for 2022 show a
change in the conventional v/s biofuel scenario ( ).To

reach this goal, attention will have to be diverted towards
lignocellulosic residues that can yield up to app. 442 billion L
per year of EtoH from agroresidues ( ). A number of
thermophillic fungal species were attractive candidate on
account of cooperative cellulolytic machinery. The inherent
process based problems of degradation, temperature
requirement (40-50°C), and longer reaction times did not
favour mesophilic species of and

. Some or most limitation of the first step
cellulolytic hydrolysis therefore turned towards the well
established thermophilic fungus systems of

and

The major attention as biofuel alternatives is likely to be
achieved through, cellulosic route (60% GHG), biomass-
based diesel (50% GHG), advanced biofuels (50% GHG) and
total renewable fuel (20% GHG) (doi.10.1155/2010/541698).
The biofuel sector has found promise at industrial scale with
the participation of university industry as a major initiative.
The programme entitled C BioN ( )
is characterized by operation of independent clusters to
investigate biomass availability and pre-treatment step;
enzymes involved; designer plant cell walls with greater
susceptibility to hydrolysis; expression of enzymes in plants;
fermentation efficiency; and, environmental, ecological, and
legal issues. This so called Genozymes Project has decided to
sequence genomes of nearly 20 true thermophilic fungi of
which stands in secreting a
cellulose- free xylanase. It was only five years ago that
xylanases of and were
cloned in ; and proteins stable from 40 to
70°C were recovered (Berka ., 2011). A comparison of
genomes of lignocellulytic thermophillic fungi with
mesophilic and

is presented in .Aquick glance at
the data shows the relatively small genome (23.3 Mb) of

; The number of coding genes is
only 5,105.The number of carbohydrate active enzymes is
placed at 224 and the nearly cellulase-free xylanase
preparation places it as the best cellulase-free xylanase
producer (Mchunu ., 2013).This thermophillic fungal
species appears to achieve thermal adaptation through
ubiquitin degradation pathway; possesses an active histone
acetylation/deacetylation machinery besides high number of
methylases and is capable of poly ADP-ribosylation. The
presence of cellulase-free xylanases and variety of adaptive
strategies permit it to grow on dead wood and its
deconstruction.

is thus not only a true
representative of small world of thermophilic fungi but also a
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Billion Gallons
Country Fuel Biofuel
India 34.0 6.8
Brazil 16.0 8.0
USA 180.0 36.0
EU-27 95.0 6.7
China 20.0 3.0

Waste
Annual

Production
(Trillion G/Yr)

Potential Ethanol
(Billion L/Yr)

Corn Stover 203.62 58.6
Rice Straw 731.34 204.6
Wheat Straw 354.35 103.8
Bagasse 180.73 51.3
Barley Straw 58.45 18.1
Oat Straw 10.62 2.78
Sorghum Straw 10.32 2.79
TOTAL 1549.42 442.0
Municipal Solid wastes
Animal wastes
(Dashtam et. al., 2009..Int.J.Biol.Sci.5 :579)

Fungus Name Size
(Mb)

No. of
coding
genes

G+C
(%) Reference

Aspergillus niger 33.91 14,165 50.40 Nat.Biotech,2007
Myceliophthora
thermophilia 38.7 9,110 51.40 Nat.Biotech,2011

Neurospora crassa 40.0 12,188 48.20 Ncbi.nlm.nih.gov/genome
Rhizomucor
miehei 27.6 10,345 43.83 BMC Genomics 2014

Thermomyces
lanuginosus 23.3 5,105 52.14 Genome Ann.2013

Thielavia terrestris 36.9 9,813 54.90 Nat.Biotech 2011
Chaetomium
thermophilium 28.3 7,227 Nuc.Acid.Res.2014

Trichoderma recei 33.9 9,129 52.00 Nat.Biotech.2008

http://www.cellulosic-biofuel.ca


candidate organism for future of bioenergy based
technologies by virtue of its colonization capacity, ability of
deconstruct wood and wood based products, and release of
cellulase-free xylanase. Thermophilic fungal world has
suddenly come up in the forefront of biotechnological
developments that are likely to add to the enzymes that are
already under industrial applications viz, lipase and protease.
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