Notes on two rare fungal isolates from Western Ghats, Goa India

J. Pratibha^{1,2} and Ashish Prabhugaonkar^{2*}

¹Department of Botany, Goa University, Goa 403206, India.

^{2*}Botanical Survey of India, Eastern Regional Centre, Shillong 793003, India

Corresponding author Email: 2*ashishprabhugaonkar@gmail.com

(Submitted in August, 2017; Accepted on December 1, 2017)

ABSTRACT

This paper describes isolation of two rare litter degrading anamorphic fungi from forests of Western Ghats of Goa, India. Argopericonia indirae is new record of genus to mainland of India and first report of molecular phylogeny of genus Argopericonia which is placed in family Chaetothyriaceae. Pseudoxylomyces elegans is a rare record of genus and species of aquatic fungus from India. Molecular phylogenetic placement of genus Pseudoxylomyces in Pleosporales supports its establishment to accommodate Xylomyces elegans Goh.

Keywords: Phylogeny of asexual fungi, aquatic fungi, fungal diversity.

INTRODUCTION

Study of litter degrading fungi of Western Ghats, India vielded several interesting isolates (Pratibha and Prabhugaonkar, 2015a; b; Pratibha et al., 2014a and b). This study describes two such isolates namely Argopericonia indirae D' Souza, S.K. Singh & Bhat and Pseudoxylomyces elegans (Goh, W.H. Ho, K.D. Hyde & K.M. Tsui) Kaz. Tanaka & K. Hiray. Study also gives molecular phylogenetic data to strengthen genus concept of these anamorphic fungi and in order to move towards natural classification (Hyde et al., 2011). Genus Argopericonia typified by Argopericonia elegans B. Sutton & Pascoe was described in 1987. D'Souza et al. (2002) added second species in genus, namely A. indirae isolated from Andaman Island. In current study A. indirae was isolated on dead twig of unidentified plant in Mhadei wild life sanctuary, Sonal, Sattari, Goa. This forms its first record from mainland of India. Identification of this fungus is supported with molecular phylogeny. This first report of molecular phylogeny of morphologically described genus Argopericonia shows it to be a member of family Chaetothyriaceae.

Pseudoxylomyces elegans (Goh, W.H. Ho, K.D. Hyde & K.M. Tsui) Kaz. Tanaka & K. Hiray. was established in 2015 to accommodate Xylomyces elegans, a species of aquatic fungus expelled from genus Xylomyces as the species belonged to order Pleosporales. Genus Xylomyces was observed to belong to order Jahanulales (Tanaka et al., 2015). The rare fungus was re-isolated from India and molecular phylogenetic study was carried out which supported establishment of this new genus.

MATERIALS AND METHODS

Collection and culturing: Freshly collected litter samples were taken to the laboratory in sealed polythene bags. The samples were observed under stereomicroscope. Fungal material was picked with a fine-tipped needle and mounted on a slide containing a drop of lactophenol solution. This was examined under a light microscope for further details.

The cultures of Argopericonia indirae and Pseudoxylomyces elegans were obtained by single spore isolation. To begin with a drop of sterile distilled water was placed on a flamesterilized slide. Then the sporulating fungal mass was aseptically transferred into the water droplet and teased apart

with flame-sterilized needle to obtain a spore suspension. The suspension was spread onto malt extract agar (MEA) plates containing antibiotics (20 mg/L each streptomycin and penicillin). Colonies developing from individual conidia were aseptically transferred into fresh plates (Bhat, 2010).

DNA isolation and PCR analysis: DNA isolation and sequencing work was done at Rajiv Gandhi Centre for Biotechnology, Thiruvananthpuram. Fresh fungal mycelia (20 mg) was scraped from the growing culture incubated at 28°C for 7 days. DNA isolation and PCR analysis was done according to the methodology of Prabhugaonkar and Bhat (2011). The 5.8S nuclear ribosomal gene with the two flanking internal transcribed spacers (ITS) and 28S nrDNA sequence (LSU) genes were amplified and sequenced using the primer pairs ITS-1F + ITS-4R 4R (White et al., 1990) and LR5 + LROR (Crous et al., 2009), respectively. The sequence quality was checked using Sequence Scanner Software v.1 (Applied Biosystems). Sequence alignment and required editing of the obtained sequences were carried out using Geneious Pro v5.1 (Drummond et al., 2010).

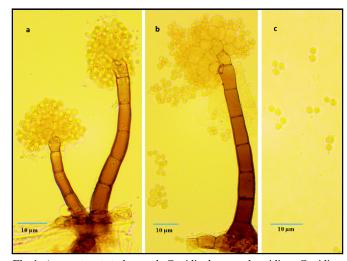


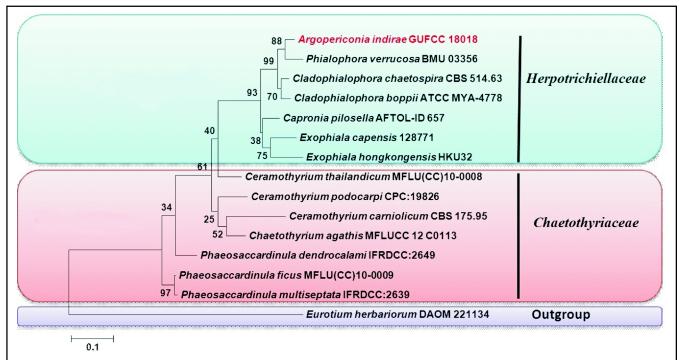
Fig. 1. Argopericonia indirae: a-b. Conidiophores and conidia, c. Conidia

Sequence alignment and phylogenetic analysis: The sequences were blasted in GenBank with Blastn. ITS and LSU data sets were analyzed. Based on the blasts, further

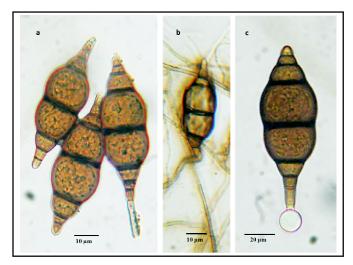
Table 1. Sequence data used in combined ITS and LSU analyses. Newly deposited sequences are in bold

Taxon	Accession no.	ITS	LSU	_
Aliquandostipite khaoyaiensis	SS3321	JN819278	-	
Argopericonia indirae	GUFCC 18018	KY977981	KY977982	
Brachiosphaer atropicalis	SS2523	FJ887923	JN819284	
Capnodium coffeae	CBS 147.52	AJ244239	DQ247800	rel
Capronia pilosella	AFTOL-ID 657	DQ826737	DQ823099	
C. carniolicum	CBS 175.95	KC978733	KC455251	ate
Ceramothyrium podocarpi	CPC:19826	KC005773	KC005795	
C. thailandicum	MFLU(CC)10-0008	HQ895838	HQ895835	
Chaetothyrium agathis	MFLUCC 12 C0113	KP744437	KP744480	
Cladophialophora boppii	ATCC MYA -4778	JN882312	JN874491	
C. chaetospira	CBS 514.63	KF928449	KF928513	
Cochliobolus heterostrophus	ATCC 64121	JX094779	JX094789	
Coniothyrium multiporum	CBS 353.65	JF740187	JF740268	
Cucurbitaria berberidis	CBS 363.93	JF740191	GQ387606	
Eurotium herbariorum	DAOM 221134	JN942870	JN938918	
Exophiala hongkongensis	HKU32	JN625231	LC159284	
Jahnula appendiculata	BCC11400	JN819280	FJ743446	
J. appendiculata	BCC11445	JN819279	FJ743445	
J. aquatica	R68-1	JN942354	EF175655	
J. bipileata	AF220-1	JN942352	EF175656	
J. bipolaris	SS44	JN819281	EF175658	
J. sangamonensis	F81-1	JN942351	EF175663	
Lepidosphaeria nicotiae	CBS 559.71	GQ203760	DQ384106	
L. pedicularis	CBS 390.80	JF740224	JF740294	
Lophiostoma macrostomum	HHUF:27293	AB433276	AB433274	
Manglicola guatemalensis	BCC20156	JN819283	FJ743448	
Montagnula aloes	CPC 19671	JX069863	JX069847	
Phaeosaccardinula dendrocalami	IFRDCC:2649	KF667242	KF667245	
P. ficus	MFLU(CC)10-0009	HQ895840	HQ895837	
P. multiseptata	IFRDCC:2639	KF667241	KF667244	
Phaeosphaeria vagans	CBS 604.86	KF251193	KF251696	
Phialophora verrucosa	BMU 03356	KF881928	KJ930100	
Plenodomus wasabiae	CBS 120119	JF740257	JF740323	
Pleospora tarda	CBS 714.68	KC584238	KC584345	
Polyplosphaeria fusca	KT 1640	AB524790	AB524605	
Preussia persica	IRAN 844	GQ292750	GQ292752	
Pseudotetraploa longissima	HC 4933	AB524796	AB524612	
Pseudoxylomyces elegans	GUFCC 18014	KY977978	KY977983	
P. elegans	KT2887	LC014593	AB807598	
P. elegans	SS1077	FJ887920	-	
Pyrenophora seminiperda	DAOM 213153	JN943665	JN940088	
Quadricrura septentrionalis	HC 4984	AB524800	AB524616	
Setosphaeria rostrata	P3006008	KC150019	KC150020	
Tetraplosphaeria yakushimensis	KT 1906	AB524808	AB524632	
Triplosphaeria maxima	KT 870	AB524812	AB524637	
Westerdykella reniformis	RKGE-35	JX235700	JX235704	
Xylomyces aquaticus	BPF10.2012	KF280586	KF313075	

d sequences were assembled for each fungus (**Table 1**). The combined data matrix was aligned using MAFFTv.7 (http://mafft.cbrc.jp/alignment/server/index.html) and manually adjusted using MEGA 6.06 to allow maximum alignment and maximum sequence similarity. Phylogenetic analysis was conducted using maximum likelihood (ML) in MEGA6.06 (Kumar *et al.*, 2008) with 1,000 bootstrap replicates. The most suitable substitution model Kimura-2-parameter model with Gamma distributed with Invariant sites (G+I) was selected by using MEGA6.06. Gaps were treated as a pair wise deletion and tree was viewed with MEGA6.06. Newly generated ITS and LSU sequences used are deposited in GenBank.


TAXONOMY

1. Argopericonia indirae D'Souza, S.K. Singh & Bhat [as 'indiraei'], Mycotaxon **82**: 135 (2002) (Fig. 1)


Colonies effuse, hairy, dark brown. Mycelium partly superficial, partly immersed, composed of light brown, smooth, septate, 2-3 μm wide hyphae. Conidiophores macronematous, mononematous, erect, straight to flexuous, unbranched, dark brown at the base, paler towards the apex, smooth, branched at the tip, 45-110 \times 2.5-5 μm . Conidiogenous cells polyblastic, descrete, terminal, hyaline, 3.5-4.5 \times 2-3 μm . Conidia solitary, sometimes catenate, spherical, aseptate, smooth, hyaline, formed in slimy mass, 2-4 μm in diam.

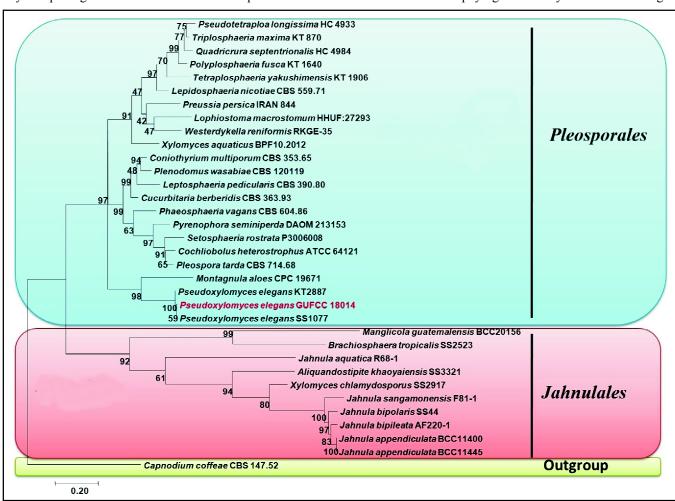
Specimen examined: On dead twig, unidentified plant, Valpoi, Sattari Goa, 26/01/2013, coll. Pratibha Jalmi, Herb No. VTL-12. GUFCC 18018.

Genus *Argopericonia* B. Sutton & Pascoe was published in 1987. Another species *Argopericonia indirae* was added in

Fig. 2. Maximum likelihood (ML) tree inferred from ITS and LSU showing the relationship of *Argopericonia indirae* with *Chaetothyrium* and other members from *Chaetothyriaceae*/*Herpotrichiaceae* in *Chaetothyriales*. Species described in the present study is in red

Fig. 3. Pseudoxylomyces elegans: a. Chlamydospores, b-c. Chlamydospores in culture

2002 from Andaman, India (D'Souza et al., 2002). Fungus was placed *Incertae sedis* in *Pezizomycotina* without any molecular phylogenetic studies (Index Fungorum, 2017) and any morphological evidence of its teleomorph. In current


study this fungus was isolated from unidentified litter from Goa. This forms first report of this fungus to Indian main land. Molecular phylogeny using ITS and LSU gene regions suggests relationship of *Argopericonia indirae* with *Chaetothyrium* and other members from *Chaetothyriaceae*/ *Herpotrichiaceae* in order *Chaetothyriales* with good bootstrap support (Fig. 2).

2. *Pseudoxylomyces elegans* (Goh, W.H. Ho, K.D. Hyde & K.M. Tsui) Kaz. Tanaka & K. Hiray., *Stud. Mycol.* **82**: 126 (2015) (Fig. 3)

Colonies effuse, dark brown, shiny. Mycelium partly immersed, partly superficial, composed of light brown, smooth, branched, septate, 2-4.5 μm wide, hyphae. Conidiophores and conidia not developed. Chlamydospores solitary, intercalary, broadly fusiform, dark brown, smooth, multiseptate, constricted at the septa, 60-100 x 25-37.5 μm .

Specimen examined: On dead twig in fresh water stream, unidentified plant, Netravali, 3/01/2013, coll. Pratibha Jalmi, Herb No.NS-14. GUFCC 18014.

Goh *et al.* (1997) described *X. elegans* from submerged wood. In current study fungus was isolated from similar habitat. Result of molecular phylogenetic study show that the fungus

Fig. 4. Maximum likelihood (ML) tree inferred from ITS and LSU showing the relationship of *Pseudoxylomyces elegans* with *Pleosporales*. Species described in the present study is in red

belongs to *Pleosporales* (**Fig. 4**). Tanaka *et al.* (2015) with similar observations established new genus *Pseudoxylomyces* to accommodate this fungus as type species of the genus *Xylomyces* was placed in order *Jahnulales*. This report supports new genus *Pseudoxylomyces* placed *Incertae sedis* in order *Pleosporales*. Borse *et al.* (2014) described *X. elegans* from India and this forms another report of this rare fungal isolate.

ACKNOWLEDGMENTS

Thanks are due to the University Grants Commission, New Delhi, for a post-doctoral research grant support to PJ. Prof. M.K. Janarthanam and Head of Department of Botany, Goa University, is thanked for supporting this work. We acknowledge Director, Botanical survey of India and Head, Botanical Survey of India, Eastern Regional Centre, Shillong, India for support.

REFERENCES

- Bhat, D.J. 2010. Fascinating Microfungi (Hyphomycetes) of Western Ghats, India. Broadway Book Centre, Panaji, India. 221 pp.
- Borse, B.D., Jagdale, P.E. and Patil, S.Y. 2014. Freshwater Higher Fungi from Pune district (MS, India) I: The Mitosporic genus *Xylomyces*. *Bioinfolet* 11 (3a): 730-734.
- Crous, P.W., Braun, U., Wingfield, M.J., Wood, A.R., Shin H.D., Summerell, B.A., Alfenas, A.C., Cumagun, C.J. and Groenewald, J.Z. 2009. Phylogeny and taxonomy of obscure genera of microfungi. *Persoonia* 22:139161. http://dx.doi:10.3767/003158509X461701
- Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Heled, J., Kearse, M., Moir, R., Stones, H.S., Sturrock, S., Thierer, T. and Wilson, A. 2010. Geneious v. 5.1, available from 485 http://www.geneious.com.
- D'Souza, M., Singh, S.K. and Bhat, D.J. 2002. New conidial fungi from Andaman Islands, India. *Mycotaxon* **82**:133-143
- Goh, T.K., Ho W.H., Hyde, K.D., and and Tsui, K.M. 1997. Four new species of *Xylomyces* from submerged wood. *Mycological Research* **101**: 1323-1328.
- Hyde, K.D., McKenzie, E.H.C. and KoKo T.W. 2011. Towards incorporating anamorphic fungi in a natural classification checklist and notes for 2010. *Mycosphere* **2**(1):1-88.

- Index Fungorum 2017 www.indexfungorum.org/names/ Names.asp
- Kumar, S., Nei, M., Dudley, J. and Tamura, K. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. *Briefings in Bioinformatics* 9: 299-306.
- Prabhugaonkar, A. and Bhat D.J. 2011. New record of *Megacapitula villosa* and *Paradictyoarthrinium diffractum* from India. *Mycosphere* **2**(4): 463-467.
- Pratibha, J., Mel'nik, V.A., Bhat, D.J., Nguyen, H.D.T. and Seifert, K.A. 2014a. Taxonomy and phylogeny of *Pseudogliophragma indica* and its synonym *Ramaraomyces corticola*, a synnematous hyphomycete from south east Asia. *Mycoscience* **56** (4): 387-395. http://dx.doi.org/10.1016/j.myc. 2014.12.002
- Pratibha, J., Prabhugaonkar, A., Bhat, D.J. and Hyde, K.D. 2014b. Phylogenetic placement of *Bahusandhika*, *Cancellidium* and *Pseudoepicoccum* (asexual Ascomycota). *Phytotaxa* **176** (1): 68-80. http://dx.doi.org/10.11646/phytotaxa.176.1.9.
- Pratibha, J. and Prabhugaonkar, A. 2015a. Multi-gene phylogeny of *Pithomyces* with the sexual morph of *P. flavus* Berk. & Broome. *Phytotaxa* **218**(1): 84-90. http://dx.doi.org/10.11646/phytotaxa.218.1.7.
- Pratibha, J. and Prabhugaonkar, A. 2015b. New record of *Thysanorea papuana* from India. *Mycosphere* **6** (4): 463-467. http://dx.doi.org/ Doi 10.5943/mycosphere/6/4/9.
- Tanaka, K., Hirayama, K., Yonezawa, H., Sato, G., Toriyabe, A., Kudo, H., Hashimoto, A., Matsumura, M., Harada, Y., Kurihara, Y., Shirouzu, T. and Hosoya, T. 2015. Revision of the *Massarineae (Pleosporales, Dothideomycetes)*. Studies in Mycology 82: 75-136.
- White, T.J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: *PCR protocols: a guide to methods and applications* (Eds.: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., (Eds.) Academic Press, New York, USA: 315-322.